post

Microwolf – running Mathematica on a Pi Zero

Wolfram’s Mathematica can run on a $5 Raspberry Pi zero. While it may be painfully slow, it does open up opportunities to use Mathematica in low-power, remote-sensing applications. This blog post is a first in a series highlighting the design challenges I’ve encountered (and in some cases overcome) building Mathematica on Pi (MoP) devices. (Hey, I think I just created a new acronym.)

Continue reading

post

A Vernier Go!Link package for Mathematica

The Go! Link from Vernier Software & Technology (Vernier), is a USB adapter for their proprietary sensors which also provides some basic features such as a buffer, sensor auto-identification and raw voltage reading conversion. Vernier provides a software development kit which allows programmers to use Go! devices in their own systems. Since Wolfram’s Mathematica software became available on the Raspberry Pi, I have been thinking about how one can build a flexible sensor system using Vernier’s products and based on the inexpensive computer and the powerful data analysis and visualization tools of Mathematica. This project isn’t new, and my earlier attempts were highlighted on the Raspberry Pi blog and I recently announced a previous version of this software package. What I’m presenting now is a more user-friendly system that makes data collection easy through the device driver framework incorporated into Mathematica.

Continue reading

GoIOLink release candidate 1

Introduction

GoIOLink is the flagship component of a project I call VernierPiLink which seeks to provide a variety of Vernier-sensor-Raspberry-Pi integration resources.  It relies on VS&T’s Go!Link USB adapter to perform the physical connection between an analog Vernier sensor and the Raspberry Pi.  On the software side, I am using the Go! I/O software development kit also from VS&T and the Wolfram Language which comes free (for non-commercial use) on the Raspberry Pi.

Continue reading