Mathematica catches the heat

I recently purchased the AMG8833 thermal camera breakout from Adafruit.  It’s an 8×8 pixel array of sensors that can be used to incorporate thermal vision into a project.  I’m interested in monitoring a thermoelectric cooler.  Adafruit provides a number of examples on how to interface the breakout with a Raspberry Pi or display connected to an Arduino.  I wanted to try a different interface and see if I could control it with Mathematica.  It took me longer to write this post than it did to write the software.

Temperature of 30×30 mm2 Peltier cooling device being measured with an AMG8833.

Read on if you’re interested in learning more

Continue reading Mathematica catches the heat

Periodic Tables at BCCE 2018

I’ve just gotten back from another wonderful BCCE conference (that’s Biennial Conference on Chemical Education) which was held at Notre Dame.  It was a great opportunity to catch up with some friends and colleagues that I’ve missed since leaving CSU last year to join the College at Brockport.

I presented some of the work I’ve been doing on 3D printed periodic tables and will blog about their construction and use in the near future.  There were some folks in the audience who wanted to get started right away with the objects, so I’ve posted them here on my website.  You can download a zip file that contains 19 tables (about 3 MB).

The zip file contains the following periodic trends:

  • atomic radii
  • ionization energies
  • electron affinities
  • electronegativities
  • human abundance
  • exceptions to the aufbau principle
  • absolute (Pearson) hardness

For the first four, there are four different sizes

  • 132×76 $mm^2$ table with title, f-block elements and symbols on each of the blocks.  These objects take about 3 hours to print.
  • 150×21 $mm^2$ table with no title, no f-block elements and symbols on each of the blocks.  These objects take about 2.5 hours to print.
  • 108×36 $mm^2$ table with no title, no f-block elements and symbols on each of the blocks.  These objects take about 2 hours to print.
  • 60×24 $mm^2$ table with no title, no f-block elements and no symbols on the blocks.  These objects take about 45 minutes to print.

As I build a collection of posts and materials for 3D-printed periodic tables, I will collect them here, so if you have interest in this project, bookmark that page.

What’s growing

Now that my students are wrapping up their summer research activities, it’s time to share some of my new designs.  This one is inspired by my students – they wanted to design and 3D print keychains – and Rozenn’s request to have name tags for our plants.

Rosemary, thyme and sage, with a bit of patriotism to boot.

Read on to see how I designed these, which involved a little bit of magic for the swash ornament.

Continue reading What’s growing

Ants Be Gone!

Our hummingbird feeder was inundated with ants. While there are plenty of commercial options available for solving this problem, I wanted to try my hand at designing my own solution. In thinking about how a water trap should be designed, I came up with the following critical elements.

  1. A leak-free cup for the water (duh)
  2. An upper attachment point that prevents tipping of the cup
  3. A lower attachment point that is integrated into the monolithic design.

Here’s the result.

I’m not fast enough with the camera to take a picture of a hummingbird.

 

Continue reading Ants Be Gone!

Students present at undergrad symposium

On April 28th, 2018, my first two undergraduate students at Brockport gave their first poster presentation at a professional meeting.

Shauna and Megan – ready to answer the tough questions.

The meeting was held at The College at Brockport this year.  There were 50 or so posters and about 100 attendees.  We also had a few oral presentations and the keynote speaker was Brockport alum Dr. Michael Nicholson of Precision BioSciences.

Megan and Shauna presented their first semester’s work on developing sensors and methods for OMIS: the Open Millifluidic Inquiry System.  Shauna is developing a method to perform alkalinity measurements in small volumes under dynamic flow conditions and Megan is working on a pH sensor based on anodically electrolyzed iridium oxide films.  They’ve made some great progress not only building confidence in their laboratory skills but also learning how to present their research (in addition to actually doing the work).  I’d consider that a good set of outcomes for their first semester in independent study (as Freshmen, no less).  Expect big things from these ladies.

P.S. Happy Star Wars Day.

Throwback Thursday – Brockport Chemistry take 2

Last week, I posted an early photo of a Chemistry lab from Brockport.  Not to be outdone, my wife Rozenn (historian of the Western Monroe Historical Society at the Morgan Manning House) found this picture in one of her books:The caption for the picture reads:

The [Brockport] Chemistry Laboratory: The 1899 yearbook describes the chemistry laboratory as “one of the best appointed in the state, having ample table room for 50 students at one time … The department has over $2,500 worth of physical apparatus, over 2,500 stereopticon slides and some 3,000 specimens.”

That $2,500 in instrumentation would be a bit over 70 thousand in today’s dollars, and I’m happy to say that our department has far more instrumentation than that.  The reference to thousands of specimens and stereopticon slides got me thinking about what was taught in Chemistry 118 years ago (hey that’s one year for every element on the periodic table).  A quick web search brought me to this article, (which is behind a paywall if you don’t have access to ACS journals) that reviews an historical Chemistry textbook from 1809.  It was written by Jane Marcet to “… provide women with a method of educating themselves in chemistry …” and uses a conversational style that is not seen in contemporary instructional materials.  This #ThrowbackThursday has me thinking about revisiting some teaching styles (to justify procrastinating on that pile of grading for one more day).

Throwback Thursday – Brockport Chemistry edition

From the Daily Eagle, courtesy of librarian Charlie Cowling, a snapshot of Chemistry instruction from the 1950s.  Apparently, Chemistry wasn’t dangerous enough to necessitate safety goggles back then, (but it was too dangerous for girls…).  How times have changed.

Back in the 1950s the College was, as its own literature stated, a “single purpose” institution, and that purpose was teacher training. Later in the mid-1960s the College would as part of its ongoing expansion become a comprehensive liberal arts college, with various majors, such as chemistry for example. But before then we still were teaching chemistry here, to aspiring science teachers, and one of the faculty was Robert Brandauer, who taught here from 1946-1970.

In a 1947 Stylus article he is described as “…the man with a million dollar smile…” He had an MS in Chemistry from Cornell (1939,) and at the time was working on his doctorate. In a curious coincidence he had previously taught at Roberts College in Istanbul, where Professor Martin Rogers had also taught. Faculty like Brandauer were in from the beginning of that incredible arc the school traveled, from a small teachers college with less than 1,000 students to a major comprehensive institution with almost 10,000 students.

Paper published

Recently, I published a paper in the Journal of Physical Chemistry, A with lead author Kyle Grice at DePaul University. He’s an inorganic chemist studying catalytic transformations using transition-metal complexes . One active area in catalysis is the development of systems that are photoactive. Using light to activate a chemical reaction (think photosynthesis) is interesting because the process is considered environmentally friendly. There are other research areas that seek to develop and better understand photochemically active systems, such as organic light-emitting diodes and solar cells. Yes, you read that correctly, better blinky-lights through chemistry.

Continue reading Paper published