Throwback Thursday – Brockport Chemistry take 2

Last week, I posted an early photo of a Chemistry lab from Brockport.  Not to be outdone, my wife Rozenn (historian of the Western Monroe Historical Society at the Morgan Manning House) found this picture in one of her books:The caption for the picture reads:

The [Brockport] Chemistry Laboratory: The 1899 yearbook describes the chemistry laboratory as “one of the best appointed in the state, having ample table room for 50 students at one time … The department has over $2,500 worth of physical apparatus, over 2,500 stereopticon slides and some 3,000 specimens.”

That $2,500 in instrumentation would be a bit over 70 thousand in today’s dollars, and I’m happy to say that our department has far more instrumentation than that.  The reference to thousands of specimens and stereopticon slides got me thinking about what was taught in Chemistry 118 years ago (hey that’s one year for every element on the periodic table).  A quick web search brought me to this article, (which is behind a paywall if you don’t have access to ACS journals) that reviews an historical Chemistry textbook from 1809.  It was written by Jane Marcet to “… provide women with a method of educating themselves in chemistry …” and uses a conversational style that is not seen in contemporary instructional materials.  This #ThrowbackThursday has me thinking about revisiting some teaching styles (to justify procrastinating on that pile of grading for one more day).

Throwback Thursday – Brockport Chemistry edition

From the Daily Eagle, courtesy of librarian Charlie Cowling, a snapshot of Chemistry instruction from the 1950s.  Apparently, Chemistry wasn’t dangerous enough to necessitate safety goggles back then, (but it was too dangerous for girls…).  How times have changed.

Back in the 1950s the College was, as its own literature stated, a “single purpose” institution, and that purpose was teacher training. Later in the mid-1960s the College would as part of its ongoing expansion become a comprehensive liberal arts college, with various majors, such as chemistry for example. But before then we still were teaching chemistry here, to aspiring science teachers, and one of the faculty was Robert Brandauer, who taught here from 1946-1970.

In a 1947 Stylus article he is described as “…the man with a million dollar smile…” He had an MS in Chemistry from Cornell (1939,) and at the time was working on his doctorate. In a curious coincidence he had previously taught at Roberts College in Istanbul, where Professor Martin Rogers had also taught. Faculty like Brandauer were in from the beginning of that incredible arc the school traveled, from a small teachers college with less than 1,000 students to a major comprehensive institution with almost 10,000 students.

Paper published

Recently, I published a paper in the Journal of Physical Chemistry, A with lead author Kyle Grice at DePaul University. He’s an inorganic chemist studying catalytic transformations using transition-metal complexes . One active area in catalysis is the development of systems that are photoactive. Using light to activate a chemical reaction (think photosynthesis) is interesting because the process is considered environmentally friendly. There are other research areas that seek to develop and better understand photochemically active systems, such as organic light-emitting diodes and solar cells. Yes, you read that correctly, better blinky-lights through chemistry.

Continue reading Paper published

It’s not purple, it’s mauve…

My wife has been tending to these orchids for a number of years.  When we were in Chicago, they looked kind of sad.  They seem to like the Brockport air (which has much less traffic pollution, so I don’t blame them).

Click on the picture to get a bigger image.  The purple orchid seems to be very pleased by finally having a non-south-facing window to sit in.  Speaking of purple, today is Henry Perkin’s 180th birthday (thank you for honoring a Chemist, Google).  Perkin is known for discovering a way to produce purple dye.  His story, which is detailed in a very readable book by Simon Garfield, is worth picking up if you have a few hours to spare.

The chemistry behind the flint water problem

Andy Brunning over at Compound Interest has created a great infographic to help explain some of the chemistry behind the Flint water crisis. The graphic is below, but I strongly encourage you to take a look at his full article

Andy’s post introduces a lot of concepts that could be incorporated into a Chemistry lecture, making it a potentially valuable resource for connecting what students may find as esoteric concepts to real-life situations.  Check out the full article while I jot down some ideas for exam questions….

Spectrometer published

One of my DIY spectrometer designs was published in The MagPi.  You can view issue 24 here or you can check out this github link which contains the word document.

As one of my ‘loyal readers’ has pointed out (thanks Nick), the schematic in the MagPi has the LED in the wrong way.  Be sure to connect the negative side of the LED to Ground and the positive side to GPIO25.

Wolfspec 2.0

Wolfspec 2.0 – Spectrometry with the Raspicam

This post is a reprint of an article I wrote on my earlier website.  I’ve tried to update the links and images, but may have missed a few.

I recently purchased the camera that attaches to a Raspberry Pi and thought about how one might be able to make a spectrophotometer using the camera as a ccd-like detector. This work is still in progress, but with relatively few steps, I was able to get an instrument up and running (and even calibrated – sort of).

Continue reading Wolfspec 2.0